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Abstract

Accurately quantifying belief strength in heuristics-and-biases tasks is crucial yet
methodologically challenging. In this paper, we introduce an automated method leveraging large
language models (LLMs) to systematically measure and manipulate belief strength. We
specifically tested this method in the widely used "lawyer-engineer" base-rate neglect task, in
which stereotypical descriptions (e.g., someone enjoying mathematical puzzles) conflict with
normative base-rate information (e.g., engineers represent a very small percentage of the sample).
Using this approach, we created an open-access database containing over 100,000 unique items
systematically varying in stereotype-driven belief strength. Validation studies demonstrate that our
LLM-derived belief strength measure correlates strongly with human typicality ratings and
robustly predicts human choices in a base-rate neglect task. Additionally, our method revealed
substantial and previously unnoticed variability in stereotype-driven belief strength in popular
base-rate items from existing research, underlining the need to control for this in future studies.
We further highlight methodological improvements achievable by refining the LLM prompt, as
well as ways to enhance cross-cultural validity. The database presented here serves as a powerful
resource for researchers, facilitating rigorous, replicable, and theoretically precise experimental
designs, as well as enabling advancements in cognitive and computational modeling of reasoning.
To support its use, we provide the R package baserater, which allows researchers to access the

database to apply or adapt the method to their own research.
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Using Large Language Models to Estimate Belief Strength in Reasoning

Consider the following problem adapted from the classic "lawyer-engineer" problem

(Kahneman & Tversky, 1973):

There is an event with 1,000 people, of which 996 are lawyers and 4 are engineers. Jack is a randomly
chosen participant who attended the event. He is a 45-year-old man, who is married and has four
children. He is generally conservative, careful, and ambitious. He shows no interest in political and
social issues and spends most of his free time on his many hobbies which include home carpentry,
sailing, and mathematical puzzles. Which is more likely: that Jack is an engineer or a lawyer?

Despite the overwhelming base-rate probability that only 4 out of 1,000 attendees are
engineers, most people incorrectly choose the "engineer" option—reacting to stereotypical cues,
such as an affinity for mathematical puzzles, rather than the base-rate information. This inclination
to overlook base-rate information is known as base-rate neglect (for a review, see Pennycook et
al., 2022), a well-documented cognitive bias with significant implications for decision-making in
various domains, including medicine (e.g., Bergus et al., 1995) and justice (Thompson &

Schumann, 2017).

Base-rate neglect and similar cognitive biases are well accounted for by dual-process
theories, which describe human thinking as an interplay between fast, effortless intuitive ("System
1") processing and slower, more effortful, deliberative ("System 2") processing (e.g., Evans &
Stanovich, 2013; Kahneman, 2011). According to these theories, cognitive biases arise primarily
because individuals frequently rely on System 1 processing, using heuristic cues—mental

shortcuts—that facilitate quick but often inaccurate decisions.

Although dual-process theories have significantly advanced our understanding of human

cognition, precisely how heuristic and logical-probabilistic information (e.g., base-rates) interact



within these systems remains unclear. One critical barrier to resolving this issue has been
methodological: researchers lack precise, systematic methods to measure and manipulate belief
strength—the degree to which heuristic cues influence reasoning (also sometimes referred to as
heuristic strength in the literature). A belief corresponds to prior knowledge about the world. In
the reasoning literature, the role of belief has been most clearly articulated in the context of belief
bias in syllogistic reasoning, where such prior knowledge interferes with judgments of logical
validity (Evans et al., 1983). For instance, when asked to evaluate the logical validity of the
following syllogism: "No addictive things are inexpensive. Some cigarettes are inexpensive.
Therefore, some cigarettes are not addictive," participants tend to rate this valid argument as
invalid because it contradicts their prior belief that all cigarettes are addictive. In the context of the
"lawyer-engineer" problem, these beliefs take the form of stereotype-driven expectations, for
example the belief that someone who enjoys mathematical puzzles is likely to be an engineer.
Here, belief strength is best understood as the strength of the stereotype, that is, the associative

strength between a descriptive trait and a social category.

Typically, the information triggering the heuristic is verbal, as it needs to activate
prepotent, automatic responses such as stereotypes in the base-rate neglect task. Consequently,
measuring belief strength is costly and requires repetitive individual ratings from human
participants to be correctly estimated. This has constrained researchers’ ability to accurately
measure and manipulate belief strength in reasoning tasks. Addressing this critical methodological

gap is the primary aim of the current paper.

At their core, all heuristics-and-biases problems, such as the "lawyer-engineer" problem
above, involve a conflict between (a) information that cues an intuitive, heuristic response (e.g.,

stereotype information suggesting Jack is an engineer) and (b) information that should be



considered according to normative principles of logic and probability (e.g., base-rate information

indicating Jack is far more likely to be a lawyer).

To date, researchers have primarily manipulated two aspects of such problems. First,
researchers have varied the alignment or conflict between heuristic and logical information by
reversing base-rate probabilities to create "no-conflict" scenarios (e.g., changing the example to
996 engineers and 4 lawyers; De Neys et al., 2011; De Neys & Glumicic, 2008; Stupple & Ball,
2008; Stupple et al.,, 2011). Second, they have systematically varied the strength of logical
information itself, for instance, using extremely skewed base-rates (e.g., 995 lawyers/5 engineers)
versus moderately skewed base-rates (e.g., 700 lawyers/300 engineers; Pennycook et al., 2015).
To our knowledge, however, no comparable systematic manipulations or precise measurements of

belief strength have yet been developed.

On a purely methodological level, precise measurement of belief strength would enable
researchers to control for variability across items. Indeed, current research typically assumes
uniformly strong belief strength across stimuli, but unaccounted variability could significantly
impact item reliability. For example, consider the widely used rapid-response base-rate neglect
items (Pennycook et al., 2014), which use single adjectives to cue stereotypes instead of a lengthy
individuating description (e.g., "There are 995 secretaries and 5 drummers. Person ‘L’ is loud. Is
person ‘L’ more likely to be a secretary or a drummer?"). Each item assumes a consistent, high
stereotype-driven belief strength. However, it is questionable whether each adjective points
equally strongly toward one group compared to the other, across the different base-rate items.
While variations in belief strength across items might not be important for experiments with large
item sets that examine robust effects, they could undermine the validity of studies relying on small

item sets or exploring subtle interactions (e.g., Bago & De Neys, 2020). This issue is particularly



relevant in studies that divide items into subsets, such as training or debiasing studies using pre-
post designs, where an imbalance in belief strength between subsets of items could bias the results

if not properly counterbalanced.
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Figure 1. Illustration of different hypothetical response functions (linear, sigmoid, and step-like)
linking belief strength to choice probability when only two belief strength levels (low and high,
indicated by black diamonds) are used. This limited binary approach restricts researchers’ ability
to precisely characterize participants’ underlying cognitive processes or strategies and differentiate

among competing theoretical models.



On a more theoretical level, accurately measuring and manipulating belief strength is
essential for understanding cognitive processes underlying heuristics-and-biases tasks. Currently,
relying primarily on binary manipulations (e.g., conflict versus no-conflict) restricts researchers’
ability to precisely examine how participants weigh heuristic versus logical information. Such
limited stimulus variation also constrains computational modeling in reasoning research, as
multiple competing models or functions could fit participants’ data equally well, as illustrated in
Figure 1. Parametric manipulations of heuristic information would thus offer greater sensitivity,
enabling researchers to better distinguish between competing reasoning models (De Neys, 2023).
This would align reasoning research with practices in other cognitive science fields—such as
perception or reinforcement learning—where researchers routinely use precise stimulus

manipulations to dissect underlying cognitive or computational processes.

To address these methodological and theoretical limitations, recent advances in natural
language processing (NLP)—particularly large language models (LLMs)—offer a promising new
approach. LLMs have successfully enabled the automation of verbal rating tasks with very high
reliability (e.g., DiStefano et al., 2024; Le Mens et al., 2023; Ornstein et al., 2023). In this paper,
we introduce a novel automated method using LLMs to systematically quantify belief strength in
base-rate neglect items. We implement this approach using two high-performance LLMs: GPT-4

(OpenAl, 2023) and LlaMa 3.3-70B-Instruct (Grattafiori et al., 2024).

We validate this automated measure against human judgments by examining both explicit
participant ratings and, importantly, actual choice patterns using these items. We further
demonstrate the utility of our approach by applying it to widely used base-rate neglect stimuli from
previous research (Pennycook et al., 2015), revealing substantial, previously unnoticed variability

in belief strength. Finally, we provide an extensive, open-access database of over 100,000 unique



base-rate neglect items, following the rapid-response format from Pennycook et al. (2014). This
comprehensive resource facilitates more precise, rigorous, and replicable future research. To
support such use, we also provide the R package baserater (Beucler, 2025), which allows
researchers to access the database and apply or adapt the method to their own experimental needs

easily.

Experiment 1: Typicality Ratings Validation

Typicality ratings reflect the extent to which specific traits are perceived as representative
of specific groups (e.g., "Nurses are typically kind"). In the present framework, typicality
operationalizes belief strength by capturing how strongly a descriptive trait is associated with a
given group. Experiment 1 aimed to validate our automated method for estimating typicality
ratings using LLMs. We generated these ratings systematically with LLMs and compared them to

human-generated ratings.

Methods

Base-Rate Task

We focus on the rapid-response base-rate task (Pennycook et al., 2014), widely used in
reasoning research for its standardized and concise format. In each trial, a short vignette presents
the composition of the sample (e.g., "This study contains nurses and politicians"), a description of
a person with a neutral name and an adjective cueing a stereotype associated with one of the groups
in the sample (e.g., "Person ‘L’ is kind"), and base-rate information (e.g., "There are 5 nurses and
995 politicians"). The task is to indicate which group the person most likely belongs to (e.g., "Is

Person ‘L’ more likely to be a nurse or a politician?").



Estimation of Typicality Ratings Using LLMs

Stereotypes as Likelihood Estimates. In our base-rate neglect example, the information
triggering the heuristic response—which we aim to quantify—is the stereotype embedded in the
person's description. In this context, we treat stereotype strength as a specific type of belief
strength—namely, a belief about category membership informed by stereotypical cues. Formally,
a stereotype (e.g., "Nurses are kind") can be expressed as a conditional probability, or likelihood,
of observing a specific trait (e.g., kind) given that one belongs to a specific group (e.g., nurse):
p(trait/group). For instance, in a base-rate item such as: "There are 995 politicians and 5 nurses.
Person ‘L’ is kind. Is person ‘L’ more likely to be a politician or a nurse?", both (a) the likelihood
and (b) the base-rate information must be integrated to accurately estimate the probability.
According to Bayes’ theorem, the posterior probability that person ‘L’ is a nurse given that she is

kind is expressed as follows:

p(H)p(D|H)
= 1
p(HlD) p(H)p(D|H)+p(=H)p(D|-H) (D

where p(H) and p(—H) are the base-rate probabilities that person ‘L’ is a nurse or a politician,
respectively, and p(D|H) and p(D|—H) are the likelihoods of observing the trait "kind" given that
person ‘L’ is a nurse and a politician, respectively. To quantify the strength of the stereotype in
each base-rate neglect item, we thus need to quantify this likelihood information for each group-
adjective pair (e.g., for nurse-kind and politician-kind). In this context, an item with a high
stereotype-driven belief strength will have a large disparity in likelihood between groups — such

as an item where a trait is much more strongly associated with one category than the other.

In natural language, this likelihood is often captured by statements of "typicality." For

instance, saying "Nurses are typically kind" expresses that the probability a person is kind, given
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that they are a nurse, is high. Because LLMs are trained on extensive human-generated datasets,
they inherently capture broad societal biases and perceptions, making them well-suited for
estimating stereotype-based likelihoods. Prior research by Le Mens et al. (2023) demonstrated that
LLMs can generate "typicality" ratings—quantifying how representative certain attributes are
within specific categories—achieving near-perfect correlation (r > 0.9) with aggregated human

judgments in domains such as literary genres and political affiliations.

Prompt Design. Building on this approach, we use LLMs to estimate the typicality of a
given trait for a specific group. For each group-adjective pair (e.g., drummer—loud), we ask the
LLM to rate how well the adjective (ADJECTIVE) describes the prototypical member of a group
(GROUP). This approach directly follows Pennycook et al. (2015), who created base-rate items
by asking participants to select traits they felt best represented prototypical group members. To
help the LLM quantify this relationship clearly, we provided additional context through three
illustrative examples (i.e., few-shot learning). Each LLM prompt consisted of two distinct sections:
a context-setting instruction (system prompt) followed by detailed instructions and examples (user
prompt). An example prompt is provided below (words in capital letters represent variables that

change with each adjective or group):

System prompt

"You are expert at accurately reproducing the stereotypical associations humans make, in order to
annotate data for experiments. Your focus is to capture common societal perceptions and stereotypes,
rather than factual attributes of the groups, even when they are negative or unfounded."

User prompt

"Rate how well the adjective "ADJECTIVE reflects the prototypical member of the group "GROUP" on
a scale from 0 ("Not at all") to 100 ("Extremely").

To clarity, consider the following examples:
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1. ‘Rate how well the adjective "FUNNY" reflects the prototypical member of the group "CLOWN" on
a scale from 0 (Not at all) to 100 (Extremely).” In this example, you would likely give a high rating
because the adjective ‘FUNNY” closely aligns with the typical characteristics of a ‘CLOWN.’

2. ‘Rate how well the adjective "FEARFUL" reflects the prototypical member of the group
"FIREFIGHTER" on a scale from 0 (Not at all) to 100 (Extremely).” In this example, you would
likely give a low rating because the adjective ‘FEARFUL’ diverges significantly from the typical
characteristics of a ‘FIREFIGHTER.’

3. ‘Rate how well the adjective "PATIENT" reflects the prototypical member of the group
"ENGINEER" on a scale from 0 (Not at all) to 100 (Extremely).” In this example, you would likely
give a moderate rating falling around the middle of the scale, because the adjective "PATIENT"
neither closely aligns nor diverges significantly from the typical characteristics of an "ENGINEER."

Your response should be a single score between 0 and 100, with no additional text, letters, or symbols
included."

LLMs Specification and Parameters. We used two high-performance LLMs: GPT-4
(version gpt-4-0613, queried in late April 2024 via OpenAl’s API) and the LlaMa 3.3-70B-Instruct
model (accessed via Hugging Face’s hosted inference API). GPT-4 was chosen for its state-of-the-
art performance, while LlaMa 3.3, a leading open-weight and publicly accessible model, was

included to enhance transparency and reproducibility.

To account for variability in the model’s responses, we follow the general approach
described by Le Mens et al. (2023) and generate 20 independent typicality scores for each group-
adjective combination. To control variability in the model’s responses, we set two sampling
parameters to their default values of 1: temperature, which controls randomness in token selection
(higher temperature increases randomness, lower temperature produces more deterministic
responses), and "Top-P", which means the model considers the entire posterior probability
distribution of candidate tokens (lower values would limit sampling to the most probable tokens,
whereas a value of 1 includes all tokens). In rare cases when the model fails to return a numerical

response, we resubmit the prompt until obtaining a total of 20 valid ratings. The final likelihood
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estimate p(adjective|group) is computed as the average of these 20 typicality scores divided by 100
to yield a probability ranging between 0 and 1. Note that individual scores were not recorded
following aggregation since they showed very little variability. Supplementary Material 1 includes
density plots and summary statistics describing the distribution of typicality ratings produced by

each model across all group—adjective combinations.

Typicality Matrix. We selected our list of groups and adjectives from the base-rate items in
Pennycook et al. (2015). The groups consisted of various professions chosen associated with
common stereotypes (e.g., surgeon, artist, clown), while the adjectives reflected personality traits
perceived as stereotypical (e.g., nerdy, arrogant, kind). Since our goal was to combine every group
pairwise, we removed generic groups (poor people, rich people, girls, men, women) that could
lead to ambiguous base-rate items creating class inclusion issues (e.g., "Is it more likely that the
person is a man or a doctor?"). Additionally, we expanded the existing material by adding 14
additional groups (e.g., psychologist, soldier, fashion designer) and 41 new adjectives (e.g., naive,
altruistic, shy), resulting in a total of 58 groups and 66 adjectives (see Supplementary Material 2

for the full list).

Typicality Ratings Validation Experiment

In Experiment 1, we collect individual human typicality ratings using the same procedure
that we use with the LLMs (e.g., "Rate how well the adjective ‘nerdy’ reflects the prototypical
member of the group ‘computer scientist’™). Our goal was to examine the correlation between

human-generated ratings and those generated by the LLM.

Participants. Participants were recruited through the Prolific platform (www.prolific.com)

and compensated £1.00 for 10 minutes of participation. Since stereotypes are likely culture-


http://www.prolific.com/
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specific, we recruited only native English-speaking North-American participants from the U.S. or
Canada, consistent with the original study by Pennycook et al. (2015), which tested Canadian
participants. A total of 50 participants were recruited (26 females; M age = 37.4, SD = 12.3), of
whom 32% reported high school, 44% a bachelor’s degree, 22% a master’s degree, and 2% a PhD

as their highest level of education.

Procedure. At the start of the experiment, participants reviewed the three examples provided
to the LLM (see prompt above). Participants then completed a rating task for a subset of 100 group-
adjective combinations sampled from the full LLM-generated typicality matrix. The subset was
chosen to uniformly represent the entire range of typicality scores present in the full database
(Experiment 1 GPT-4 typicality range: 11.3-95.8; full LLM database GPT-4 typicality range: 7.4—
99.8). For each combination, participants rated how well an adjective described the prototypical
member of a specified group (e.g., "Rate how well the adjective ‘IDEALISTIC’ reflects the
prototypical member of the group “WRITER’"). These combinations were presented in a random
order. Participants provided ratings using a visual analog scale ranging from 0 ("Not at all") to 100

("Extremely"), with the selected rating displayed numerically above the scale.
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Figure 2. LLMs ratings are highly predictive of human typicality ratings. a) Relationship between
the average LLMs rating and the average human typicality rating in Experiment 1. The solid lines
represent linear model fits. Each point represents an adjective-group association. b) Average
correlation between a single typicality rating and an aggregated measure of N human typicality
ratings as a function of N. The dotted horizontal lines represent the average correlation achieved
by each LLM. GPT-4 matches the performance of four to five human raters, while LlaMa 3.3

equals that of two to three human raters.

As shown in Figure 2A, typicality ratings from GPT-4 closely matched participants’ average
ratings in Experiment 1 (= 0.88, p <.001), with LIaMa 3.3 showing slightly lower but still strong
correlation (» = 0.82, p <.001). Note that averaging the typicality ratings produced by GPT-4 and

LlaMa 3.3 produced only a very modest improvement (r = .89), indicating that combining both
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models offers limited additional predictive accuracy over GPT-4 alone, which may be explained
by the high correlation between the two LLMs’ ratings (see Supplementary Material 3). LLM
ratings can thus closely approximate the average human typicality rating in the context of

stereotypes.

To better compare LLM performance to human raters, we use the Equivalent Number of
Observations (ENO) score, following Le Mens et al. (2023). The ENO score quantifies how many
human ratings are required to achieve predictive accuracy equivalent to that of a given model.
Predictive accuracy, in this context, is defined as the average Pearson correlation between

participants’ typicality ratings and the ratings generated by the model.

To compute the ENO score, we performed a bootstrap analysis. Specifically, we correlated
the ratings from one random participant (the holdout) with the average ratings from varying
numbers of other randomly selected participants. We repeated this process 1,000 times for each
sample size (ranging from 1 to 49 participants in our case). By comparing the average correlations
from these bootstrap samples to the model’s predictive accuracy, we determined the ENO score—
the number of human ratings required to match the model’s performance. A higher ENO score
indicates greater predictive accuracy, as it corresponds to less noise and more consistent

judgments, similar to how increasing sample size reduces variance and improves reliability.

The results are shown in Figure 2B. GPT-4 outperformed LlaMa 3.3, with an average
correlation of r = 0.63 with a single human rating—equivalent to the performance of four to five
aggregated human raters. In comparison, LlaMa 3.3 reached an average correlation of r = 0.58,

matching the performance of two to three aggregated human raters. Importantly, increasing the
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number of human raters only yields marginal gains, as it eventually plateaus at approximately r =

0.70.

Finally, to assess the robustness of our approach, we explored alternative methods for
eliciting typicality ratings from the LLMs by varying model settings and using alternative prompts.
Overall, the correlation with human typicality ratings was minimally affected by changes in
settings or prompts (LlaMa 3.3: »=0.78-0.82; GPT-4: » = 0.85-0.89). The detailed results of these

analyses are reported in Supplementary Material 4.

Experiment 2: Measuring Stereotype Strength in Base-Rate Neglect Items

In Experiment 1, we validated our approach by demonstrating that LLM-generated typicality
ratings closely align with explicit human judgments. Although this correlation provides strong
evidence for the validity of our automated method, a critical next step is to examine whether these
ratings can predict actual behavioral choices. To address this, we compute a measure of stereotype
strength—Dbased on the relative typicality between two groups—and examine its predictive validity

in a base-rate neglect task using our newly created item database in Experiment 2.

Methods

Stereotype Strength Measure

A typical rapid-response base-rate neglect item from Pennycook et al. (2014) includes two
groups (e.g., nurses and politicians), one descriptive adjective (e.g., "kind"), and two
corresponding typicality ratings—one rating for how typical the adjective is of each group.
Because typicality ratings were provided on a 0—100 scale, we converted them to likelihoods by

dividing each rating by 100. Likelihoods of zero were offset (1e-6) to allow calculations of the log
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ratio. This included 0.55% of LlaMa 3.3 ratings and 0% of GPT-4 ratings. To ensure this post-
processing did not affect our conclusions, we examined the correlations between human and
LlaMa ratings before and after excluding raw zero ratings; this exclusion did not impact the
correlation (see Supplementary Material 5). To quantify how strongly a given adjective favors one
group over the other, we computed stereotype strength as the logarithm of the ratio between these

p(AlGl) (2)

two group-adjective likelihoods: log P(A(Gy)
2

where p(A|G) is the likelihood derived from the typicality rating for adjective A given group G.

This log ratio provides a symmetrical measure that quantifies the strength of association
between the trait and each group. A log ratio of zero indicates equal likelihood of the trait in both
groups, meaning the adjective is uninformative with respect to the two groups. Positive values
suggest a stronger association with the first group, while negative values indicate a stronger

association with the second group.

For instance, consider the two following items from Pennycook et al. (2015): computer
programmers—construction workers—nerdy and consultants—aerobics instructors—helpful. We
might imagine that the likelihood of being perceived as nerdy, given that one is a computer
programmer, is high, p(nerdy|computer programmer) = 0.8, while it is much lower for a
construction worker, p(nerdy|construction worker) = 0.1. This yields a log ratio of log(0.8/0.1) =
2.08, which strongly favors the computer programmers group over the construction workers group.
Conversely, we might imagine that both p(helpful|teacher) and p(helpful|doctor) are high, say 0.8,
which results in a log ratio of log(0.8/0.8) = 0. This means that, in this case, the item will fail to

elicit a strong heuristic response.



Construction of Base-Rate Item Database
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Figure 3. Overview of the base-rate item database pipeline. The typicality of each adjective is first

computed for each group using an LLM (step 1) to create the typicality matrix. Each typicality

score can be interpreted as the conditional probability of having a specific trait given that one

belongs to a particular group (e.g., the probability of being kind given that one is a computer

scientist). Next, for each pairwise combination of groups with one adjective (e.g., clown-nurse-

funny), the stereotype strength is determined by calculating the log ratio of the two typicality

scores/conditional probabilities, to create the final base-rate item database (step 2).
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To create our base-rate item database, we first computed the typicality rating of each
adjective for each group using the LLM method described above, separately for GPT-4 and LlaMa
3.3. This resulted in a 66-adjective x 58-group typicality matrix. We then created individual base-
rate items, each consisting of two groups and one adjective (e.g., clown-nurse-funny). We
generated every possible pairwise combination of groups (1,653 combinations) and computed the
stereotype strength for each of the 66 adjectives, yielding a total of 109,098 base-rate items. The

full pipeline is described in Figure 3.

Base-Rate Neglect Validation Experiment

In Experiment 2, we use our newly created item database in the rapid-response base-rate
neglect task (Pennycook et al., 2014), where we systematically vary stereotype strength to see
whether it accurately predicts participants’ choices. Note that we rely on GPT-4 measures, as they
proved to be more correlated with human judgments than those derived from LlaMa 3.3 (see

Experiment 1 results).

Participants. We recruited 151 native English-speaking participants from the U.S. or
Canada (74 females; M age = 39, SD = 11.9) via Prolific, who were compensated £3.00 for 30
minutes. 33% reported high school, 48% a bachelor’s degree, 15% a master’s degree, and 4% a

PhD as their highest education level.

Procedure. Participants solved 240 base-rate neglect problems, divided into 4 blocks of
60 trials. Each trial began with a fixation cross presented during 500 ms, followed by the sample
composition (e.g., "This study contains computer programmers and hippies."), a brief description
of an individual with a neutral name and adjective (e.g., "Person ‘G’ is nerdy."), and the base-rate

information (e.g., "There are 50 computer programmers and 950 hippies."). Participants indicated
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the most likely group membership by pressing ‘C’ or ‘N’ to select the left or right response,

respectively. Confidence ratings were collected after each response.

Items were dynamically and randomly sampled for each participant from the base-rate
neglect database to ensure uniform coverage of stereotype strength. To achieve this, we divided
the full set of items into predefined bins based on the difference between the two typicality scores
(e.g., 0—14, 14-28, ..., up to 84—the highest observed difference in the dataset). These bins
allowed us to sample items across the full range of stereotype strength values in a controlled
manner. Participants thus saw different, unique base-rate items, matched in stereotype strength
according to these stereotype strength difference bins—a procedure made possible by the large
number of items available in our database. In parallel, we used ten different base-rate ratios ranging
from 50/950 to 950/50 in steps of 100, so that some problems involved balanced base rates while
others were more extreme. Each base-rate ratio was paired with an equal number of items from
each stereotype-strength bin to maintain balanced coverage across the full range of both

dimensions.

While item selection was based on typicality score differences, our analyses rely on the
absolute log ratio of category likelihoods, which provides a more theoretically grounded measure
of stereotype strength (see above). Since our primary interest is the relationship between stereotype
strength and participant choices, we collapsed our analyses across base-rate values. Note that when
stereotype strength is high but base-rates are weak for a given response option, choosing the
stereotype-consistent option is not always the normatively correct response under Bayes’ rule.
However, our focus here is not on normative accuracy, but on how strongly stereotype strength

predicts human choices.
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Results

LLMs’ typicality ratings closely match human judgments, but a more critical test is whether
our stereotype-driven belief strength measure (i.e., the log ratio of typicality ratings) predicts actual
human decisions in a base-rate neglect experiment (Experiment 2). In all analyses, response choice
was coded as 1 when participants selected the option on the left and 0 otherwise. Stereotype
strength was computed as the log ratio of typicality values in favor of the left option:
log p(adjective | group left) / p(adjective | group right). Figure 4 illustrates the proportion of
choices as a function of stereotype strength, aggregated across all base-rate conditions. For
visualization purposes, we binned the signed log ratio—calculated in favor of the response option
presented on the left—into 10 intervals of width 0.5, ranging from —2.5 to 2.5. The figure shows

that participants’ choices are well predicted by our stereotype strength measure.
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Figure 4. Proportion of choices as a function of the GPT-4 stereotype-driven belief strength
measure (binned). Black dots represent the observed median proportion of choices for each log-
odds bin of stereotype strength, with error bars indicating bootstrapped confidence intervals. The
dashed red line represents predictions from a mixed-effects logistic regression model, and the

shaded red ribbon shows the bootstrapped confidence interval for these predictions.

To test this statistically, we built a generalized mixed-effects logistic model, using response
choice (left = 1, right = 0) as the dependent variable and stereotype strength—measured as
log(p(adjective|group left) / p(adjective|group right))—as a fixed effect. We included uncorrelated

random intercepts and slopes for participants in the model. Model comparisons based on the



23

Bayesian Information Criterion (BIC) indicated that this random-effects structure provided the
best fit to the data. As shown in Figure 4, results indicate that stereotype strength is a statistically
significant and strong predictor of participants’ choices, regardless of base-rate values, OR = 3.49,

p <.001, 95% CI = [3.06, 3.97].

Analysis of Existing Base-Rate Items

The previous analysis showed that our stereotype-based belief strength measure effectively
predicts participants’ choices in a controlled base-rate neglect task, highlighting its validity.
However, an important question is how strongly the items from prior research—designed to evoke
stereotypical responses—are characterized by our metric. Do they score uniformly high on our

stereotype strength measure?

In this section, we leverage our method to quantify the stereotype strength of our selection
of base-rate neglect items previously used by Pennycook et al. (2015). Since we excluded items
involving overly generic groups (e.g., "poor people" or "girls"; see Method section above), our
analysis focuses on 88 of the original 132 items. We then compare these to the items in our newly

created base-rate item database.
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Figure 5. Stereotype strength distributions based on the GPT-4 ratings. a) Stereotype strength
distribution in existing base-rate items from Pennycook et al. (2015) present in our database (n =
88 items). b) Stereotype strength distribution in the new base-rate item database (n = 109,098
items). Note that the log ratios in the database are always positive by construction, since we

ensured that the item with the highest typicality ratings was always in the numerator of the ratio.

As shown in Figure 5A, none of the existing base-rate items elicit a stereotype in the opposite
direction. In other words, no item has a negative log ratio value, where the group favored by the
adjective differs from the one assumed by the item. Nonetheless, the stereotype strength of these
items varies widely, spanning from 0.02 to 2.17 in absolute log ratio values (M = 0.97, SD = 0.54).
Supplementary Material 6 shows the stereotype strength distributions based on ratings from LlaMa

3.3.
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To illustrate the potential behavioral implications of this variability, we used our generalized
logistic mixed-effects model fitted on the data from Experiment 2 (i.e., the base-rate neglect
experiment). The model allows us to predict response choice as a function of the GPT-4 stereotype
strength in the existing items with a very good fit (see Figure 4). For the weakest item in the
existing dataset (consultant — aerobics instructor — helpful), the log ratio is 0.02, predicting a 51%
probability of selecting "consultant". This suggests that participants would be at chance level when
choosing based on the stereotype (corresponding to the midpoint of the sigmoid curve in Figure
4). Conversely, for the strongest item (high school coach — librarian — loud), the log ratio is 2.17,
predicting that "high school coach" would be selected 94% of the time. Overall, for the average
log ratio value in existing items (0.97), the model predicts that the participant would choose this
group 77% of the time. This wide variation in stereotype strength among base-rate items could
thus be problematic for experimental validity, as weaker stereotypes may inconsistently trigger

heuristic responses, undermining reliability and replicability of results.

Overview of the Base-Rate Item Database

Figure 5B shows the full distribution of stereotype strengths within the database, while
Supplementary Material 7 summarizes key statistics separately for the LlaMa 3.3 and GPT-4
ratings. As expected, most adjectives do not favor either of the two groups, resulting in a stereotype
strength distribution heavily skewed to the right. However, given the substantial size of the
database (109,098 items), it still contains many high-strength stereotype items. For instance, while
Figure 5B may give the impression that very few items exceed a (high) GPT-4 stereotype strength
of 1.5, the database actually contains 2,446 such items, providing a rich dataset of high stereotype

items. For illustration, Figure 6 shows an example of all 1,653 possible items that can be created
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based on one of our 66 adjectives ("arrogant"). In addition, Supplementary Material 8 provides
examples of these items along with their associated typicality ratings and stereotype strengths from

both GPT-4 and LlaMa 3.3.

Typicality (“Arrogant”)
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Figure 6. [llustration of all possible items for the adjective "Arrogant." The upper part of the matrix
shows stereotype strength, computed as the log-ratio of GPT-4 typicality ratings (column / row).

Higher values (darker red) indicate that the column group is rated as more "arrogant" than the row
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group (e.g., "politician" over "kindergarten teacher" in the top-left cell). The lower part of the
matrix shows predicted human choice probabilities from the mixed-effects logistic model fit to the
base-rate neglect task (Experiment 2), collapsed across base-rate values. Higher values (darker
green) reflect a greater likelihood of choosing the row group over the column group based on the
stereotype (e.g., "politician" over "kindergarten teacher" in the bottom-right cell). The bar plots on
the margins show the raw GPT-4 typicality ratings across each group, where taller and redder bars

indicate higher typicality scores for that group.

Discussion

In this paper, we introduce an automated method to measure and quantify belief strength
in heuristics-and-biases research using LLMs focusing on the popular base-rate neglect task. Using
this approach, we created a comprehensive, open-access database containing over 100,000 unique
base-rate neglect items. Importantly, the database spans a wide range of stereotype-driven belief
strengths, allowing researchers to systematically vary the strength of the corresponding heuristic

response in a precise manner.

We validated this method by comparing it with human judgments, using both participant
typicality ratings (i.e., how typical a description is of a specific group; Experiment 1) and their
actual choices on the newly generated base-rate items (Experiment 2). Our results show that our
automated measure of belief strength, generated with LLMs, is highly correlated with human
typicality judgments. More importantly, the LLM-derived belief strength measure strongly
predicts human choices in a base-rate neglect task, so that the stronger the belief strength induced

by a stereotype, the more likely participants are to choose the option that aligns with the stereotype.
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Overall, GPT-4 outperformed the publicly available LlaMa 3.3 model, as GPT-4’s ratings
showed higher correlations with human typicality judgments. Additionally, averaging ratings from
both models did not yield substantial improvements in performance. While we report results from
LlaMa 3.3 to support research transparency and reproducibility, we recommend using GPT-4

ratings for applications where performance is critical.

Our LLM-derived measure is thus a highly cost-effective proxy for the average belief
strength across a population. Measuring belief strength using human raters involves averaging
judgments from multiple participants. However, the question of how many ratings are needed to
produce accurate estimates of belief strength is unclear. Comparing our LMM and human rater
approaches, we found that increasing the number of raters beyond a certain threshold yields
diminishing returns (see Figure 2B). Indeed, we observed that interindividual differences in
stereotype perception limited the precision achievable by any aggregate measure, human or
automated. A more precise measure would involve obtaining individual ratings directly from each
participant performing the task, with the need to add an additional session following the main

experiment dedicated to estimating those associations.

However, human-based methods are often impractical due to substantial constraints related
to budget, time, and resources, especially when evaluating large numbers of stimuli. Although
imperfect, our automated approach effectively addresses these practical challenges by striking an
efficient balance between precision and scalability, providing reliable estimates of average belief
strength at the group level. Consequently, this approach allows researchers to quickly generate
extensive datasets with standardized measures, which would otherwise be difficult to conduct
using traditional human-based methods alone. In our case, we generated 3,828 typicality ratings

to build the 109,098-item database. Each rating required a single 418-token API call (398 input
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tokens and 20 output tokens to generate and average 20 individual LLM ratings). The total cost
for this process was approximately $54.00 using GPT-4 and $1.42 using LlaMa 3.3. Using the
more recent OpenAl GPT-40 model would have cost only about $4.60 for the same task. By
comparison, collecting equivalent human data on Prolific, which required five individual ratings
per item to achieve similar performance to GPT-4, would have cost about $320 in total, assuming
a pay rate of $7.72 per hour per participant and a 30% platform fee. Overall, the LLM-based
approach is roughly six times less costly with GPT-4, 70 times less costly with GPT-40, and 225

times less costly with LlaMa 3.3 than human ratings.

Finally, we applied this approach to widely used base-rate neglect items from Pennycook
et al. (2015), which were all designed to elicit a strong heuristic response by presenting
descriptions that strongly favored one group over the other. Our analysis revealed substantial
variation in belief strength driven by stereotype content across these items. Specifically, some
items exhibited high stereotype-based belief strength, while others were comparatively less
effective in eliciting a strong belief. This variability has important consequences for reasoning
research. In the context of a base-rate neglect experiment, for instance, this suggests that existing
items may not equally trigger heuristic responses, potentially affecting the reliability and

replicability of findings across studies.

By systematically quantifying belief strength, our approach provides a way to better control
for this variability. This enables one to refine item selection or to dynamically adjust belief strength
to match experimental needs. To facilitate its broader use, we also provide the R package baserater
(Beucler, 2025), which allows researchers to access the database and evaluate new base-rate items
(e.g., in a different language or with longer stereotypical descriptions). Users can choose a

preferred large language model, adjust generation parameters, and customize the prompt to explore
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whether different models, settings, and prompt formulation better predict the human typicality
ratings from Experiment 1. The package can also be used to create a new base-rate item database
from scratch, for instance in a different linguistic and cultural context. Access to the LLMs requires

an API token from the open-source platform Hugging Face (https://huggingface.co). All

functionalities are documented in the package, which includes a tutorial to guide users through

typical use cases.

In this paper, we focused on short base-rate items that are widely used in reasoning research
for precise measurement of reaction times or neuroimaging due to their standardized format.
However, the same procedure can, in principle, be applied to base-rate paradigms involving richer,
more complex descriptions. For example, it can be applied to items similar to the classic lawyer—
engineer problem, where participants receive an extended personality vignette for each profession.
Such scenarios preserve the core structure of base-rate reasoning while offering greater ecological
validity, as individuals must evaluate multiple pieces of information rather than a single cue. This
is also a particularly promising direction because such richly structured vignettes are notoriously
labor-intensive to norm with human ratings, whereas automated LLM-based ratings provide a

scalable alternative.

Similarly, our approach could be adapted to other heuristics-and-biases tasks, where a verbal
description is assumed to activate a belief signal that biases participants’ responses. One natural
candidate is the conjunction fallacy demonstrated in the well-known "Linda problem" (Tversky &
Kahneman, 1983). In this task, a stereotypical description triggers a heuristic response conflicting
with a fundamental probability rule—that the probability of two events occurring together cannot

exceed the probability of either event alone. In syllogistic reasoning tasks featuring a conflict
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between logical validity and the believability of the conclusion, this approach could be used

analogously to compute the belief strength of the conclusion independently of its logical status.

Conceptually, extending our method to more complex, multi-cue reasoning tasks requires
specifying, for each paradigm, (a) which aspects of the description shape participants’ belief-based
response and (b) what linguistic unit the LLM should rate. We see two complementary strategies
for specifying this rating unit. A first, holistic approach treats the entire vignette as the unit to be
rated: the LLM is asked how well the full description fits each available response option, yielding
typicality scores that can be turned into a belief-strength index via a log ratio of typicality ratings.
A second, more granular approach decomposes the vignette into constituent traits (e.g., "enjoys
mathematical puzzles", "shows no interest in political issues"), computes belief strength for each
trait separately as a log ratio of typicality ratings, and then aggregates these component-wise
measures to approximate the overall belief strength. For instance, one can sum them on the log-

odds scale, under a standard conditional-independence assumption that traits provide independent

evidence given the group.

In either case, both strategies require careful prompt design and, critically, new validation
work to test whether the resulting belief-strength measures correlate with human judgments and
predict behavior in the corresponding tasks. Future research should also compare these two
approaches directly to determine which measure provides the most appropriate representation of
belief strength in light of the specific research questions and stimuli used. More broadly, any
paradigm in which a verbal description is assumed to activate a prepotent response can be treated
within the same framework: identify the relevant belief signal, decide whether to model it at the
holistic or individual component level, compute LLM ratings for the corresponding linguistic

units, integrate these ratings into a quantitative belief-strength parameter, and validate that
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parameter against human ratings and choice behavior. Our method thus provides a generalizable
framework for investigating situations in which heuristic responses triggered by verbal

descriptions conflict with formal logical principles.

Our research has some limitations. First, although we used a prompt directly inspired by
previous research on LLMs’ typicality ratings (Le Mens et al., 2023) as well as base-rate neglect
item construction (Pennycook et al., 2015), a more data-driven approach could enhance the
predictive power of our belief strength measure. Notably, automatic prompt-engineering
techniques (e.g., Abraham et al., 2025), which use LLMs to iteratively craft high-quality prompts,
could further improve the prediction accuracy of our typicality measure, given that prompt
selection can significantly affect performance outcomes (Weber & Reichardt, 2023). However,
note that variations in our prompt and LLM settings resulted in only small differences in

performance (see Supplementary Material 4).

Our current base-rate database has only been validated with participants from the U.S. and
Canada. Although some stereotypes—such as "clowns are funny"—may appear broadly
generalizable, others could be more culture-specific and thus fail to trigger heuristic responses in
different populations. It will therefore be important for future work to consider potential
intercultural differences. To ensure that belief strength measures remain applicable across cultures,
we recommend refining prompts to better align with the target cultural context (e.g., Kovac et al.,
2023), using fine-tuned LLMs trained specifically on culturally distinct datasets (e.g., Chan et al.,

2024), or employing culturally adapted LLMs trained on augmented survey data (Li et al., 2024).

By harnessing automated methods and large-scale data generation, our approach provides
researchers more control and precision in quantifying belief strength. This methodological

advancement not only addresses critical limitations in current research, such as unnoticed
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variability in belief strength across items, but also substantially improves the ability to distinguish
among competing cognitive models of heuristic reasoning. Our open-access database containing
over 100,000 systematically rated items, validated against human judgments, represents a powerful
resource that can significantly enhance the rigor, replicability, and theoretical clarity of future

heuristics-and-biases research.
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Supplementary Material

1. Typicality Ratings Across Group—Adjective Pairs
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Figure S1. Distribution of typicality ratings across all group—adjective combinations for GPT-4

and LlaMa 3.3.
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Table S1

Summary statistics of the typicality ratings across all groups—adjective combinations for GPT-4

and LlaMa 3.3.

Model Mean Median SD Min Max
GPT-4 49 8 44.7 25.2 7.4 99.8
LlaMa 3.3 50.6 46.0 27.8 0.0 99.6

Note. SD = standard deviation; Min = minimum; Max = maximum.



2. Groups and Adjectives Used in the Database

Table S2

List of groups and adjectives used in the database.

41

Group New Group Adjective New Adjective
farmer Old intelligent Old
computer programmer Old arrogant Old
flight attendant Old nerdy Old
high school coach Old kind Old
dentist Old loud Old
lawyer Old careful Old
engineer Old argumentative Old
real estate agent Old persuasive Old
accountant Old immature Old
surgeon Old active Old
architect Old funny Old
librarian Old disorganized Old
lab technician Old dishonest Old
artist Old gentle Old
consultant Old sensitive Old
scientist Old creative Old
nanny Old helpful Old
boxer Old strong Old
paramedic Old brave Old
businessman Old bossy Old
secretary Old unconventional Old
executive manager Old quiet Old
assistant Old organized Old
nurse Old reliable Old
writer Old ambitious Old
telemarketer Old charming New
clown Old confident New
fireman Old efficient New
pianist Old friendly New
doctor Old generous New
hippy Old naive New
construction worker Old witty New
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Group New Group Adjective New Adjective
gardener Old empathetic New
aerobics instructor Old stubborn New
sixteen year old Old trustworthy New
politician Old meticulous New
kindergarten teacher Old inventive New
drummer Old charismatic New
chef Old reserved New
bartender Old altruistic New
pilot Old original New
social worker Old impulsive New
veterinarian Old zealous New
journalist Old rational New
police officer New idealistic New
electrician New conservative New
fitness trainer New solitary New
psychologist New passionate New
actor New adventurous New
historian New cautious New
DJ New extravagant New
diplomat New jovial New
environmental activist New cooperative New
music producer New attractive New
fashion designer New muscular New
photographer New shy New
soldier New social New
fashion model New warm New
moody New
lazy New
hardworking New
imaginative New
narrow-minded New
boring New
selfish New
narcissistic New

Note. “Old” groups and adjectives refer to those originally used in Pennycook et al. (2015).
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3. Correlation Between LLMs’ Typicality Ratings
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Figure S2. Relationship between the average LLM typicality ratings in Experiment 1. The solid

line shows a linear model fit. Each point corresponds to an adjective—group association.
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4. Validation of Prompt and LLM Settings

Table S3
Correlations between model predictions and human typicality ratings across prompt and settings

variations in Experiment 1.

Model Variation r 95% CI1 )2
GPT-4 Cultural Context 0.89 [0.85, 0.93] <.001
GPT-4 Current Approach 0.88 [0.83,0.92] <.001
GPT-4 Zero-shot Learning 0.88 [0.82, 0.92] <.001
GPT-4 Deterministic 0.87 [0.82,0.91] <.001
GPT-4 Frequency Format 0.85 [0.79, 0.90] <.001
LlaMa 3.3 Cultural Context 0.82 [0.75, 0.88] <.001
LlaMa 3.3 Current Approach 0.82 [0.74, 0.87] <.001
LlaMa 3.3 Deterministic 0.80 [0.72, 0.86] <.001
LlaMa 3.3  Frequency Format 0.79 [0.71, 0.86] <.001
LlaMa 3.3  Zero-shot Learning 0.78 [0.69, 0.85] <.001

To assess the robustness of our prompt and settings, we tested four variations on the 100
group—adjective pairs from Experiment 1 to compare it with the approach we implemented throughout

the paper ("Current Approach"):

- Deterministic: same prompt as the original one, but with temperature set to 0 to force a single
deterministic output without averaging multiple responses;

- Zero-shot learning: removed the three examples from the user prompt;

- Frequency format: changed the user prompt to ask for a frequency estimation instead of a
typicality rating, e.g., “Imagine a group of 100 GROUP MEMBERS. How many of them
would you expect to be ADJECTIVE?”;

- Cultural context: specified that the stereotypes should be those prevalent in U.S. culture

(since our participants were from the U.S. or Canada), by slightly changing the system prompt:
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“Your focus is to capture common societal perceptions and stereotypes prevalent within U.S.

culture.”

The results are reported in Table S3. Overall, the variation was small, and our current approach was

near the best-performing settings, suggesting that our prompt and parameter choices are robust.
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5. Excluding Raw Values of 0 for LlaMa 3.3 Ratings in Experiment 1

One possible explanation for the lower performance of LlaMA 3.3 compared to GPT-4 is
that LIaMA 3.3 occasionally generates extreme typicality ratings of 0, which does not occur for
GPT-4. To test this, we recomputed the correlation between human typicality ratings and LlaMA
3.3 in Experiment 1 after excluding all raw ratings of 0 before averaging. This exclusion did not
affect the correlation (» = 0.82, p < .001). These results suggest that the lower performance of
LlaMA 3.3 is unlikely to be driven by the presence of zero ratings, but rather reflects genuinely

weaker model performance compared to GPT-4.
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6. LlaMa 3.3 Stereotype Strength Distribution
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Figure S3. Stereotype strength distributions based on the LlaMa 3.3 ratings. a) Stereotype strength
distribution in existing base-rate items present in our database (n = 88 items). b) Stereotype
strength distribution in the new base-rate item database (n = 109,098 items). Note that the log
ratios in the database are always positive by construction, since we ensured that the item with the

highest typicality ratings was always in the numerator of the ratio.
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7. Summary Statistics of the Database

Table S4

Summary statistics of the stereotype strength measure across all groups—adjective combinations

for GPT-4 and LlaMa 3.3 in the database.

Model N Mean  Median SD Q1 Q3 Min Max Skewness
GPT-4 109,098 0.5 0.4 0.4 0.1 0.8 0 23 1
LlaMa 3.3 109,098 0.8 0.6 1.8 0.1 1.1 0 18.3 8

Note. N represents the number of observations. SD = standard deviation; Q1 = first quartile; O3 =

third quartile; Min = minimum; Max = maximum.



8. Example Items from the Database

Table S5

Example items from the base-rate database.
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GPT-+4 LlaMa 3.3
GPT-4 GPT-+4 LlaMa 3.3 LlaMa 3.3
Group 1 Group 2 Adjective Stereotype Stereotype
Rating 1 Rating 2 Rating 1 Rating 2
Strength Strength
doctor writer confident 88.2 72.2 0.2 86.7 73.3 0.2
construction
chef idealistic 30.0 19.6 0.4 26.7 20.0 0.3
worker
farmer artist helpful 80.0 38.0 0.7 80.0 40.0 0.7
executive social
bossy 75.0 31.2 0.9 79.5 70.0 0.1
manager worker
sixteen-year-
electrician arrogant 70.0 20.2 1.2 66.1 20.0 1.2
old
politician pianist disorganized 69.4 16.8 1.4 68.1 20.0 1.2
clown nanny immature 72.4 15.6 1.5 80.0 20.0 1.4
fashion
nanny narcissistic 67.1 11.1 1.8 78.6 5.0 2.8
designer
computer
boxer nerdy 85.2 10.4 2.1 83.7 52 2.8
programmer
fashion
paramedic  extravagant 79.6 8.0 23 81.7 16.7 1.6
model

Note. Stereotype strength corresponds to the log ratio of the ratings as per Equation (2).



